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Figure 1: Simulated characters in a �tness class. The scene consists of 25 physics-based soft-body avatars, each one with di�erent

soft-�esh properties automatically estimated from their shape. The scene runs at 1.2 fps single-threaded.

ABSTRACT

We present a multi-person soft-tissue avatar model. This model
maps a body shape descriptor to heterogeneous geometric and
mechanical parameters of a soft-tissue model across the body, e�ec-
tively producing a shape-dependent parametric soft avatar model.
The design of the model overcomes twomajor challenges, the poten-
tial redundancy of geometric and mechanical parameters, and the
complexity to obtain abundant subject data, which together induce
major risk of over�tting the resulting model. To overcome these
challenges, we introduce a local shape-dependent regularization of
the model. We demonstrate accurate results, on par with indepen-
dent per-subject estimation, accurate interpolation within the range
of body shapes of the training subjects, and good generalization to
unseen body shapes. As a result, we obtain a parametric soft-�esh
avatar model easy to integrate in many existing applications.

CCS CONCEPTS

• Computing methodologies→ Physical simulation.
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1 INTRODUCTION

Motion and deformation of the human body are of high interest
in many computer-graphics applications, including capture and
reconstruction [Bai et al. 2022; Işık et al. 2023], VFX [Smith et al.
2018], interactive avatar simulation [Komaritzan et al. 2021], or
virtual try-on of clothing [Harrison et al. 2018]. A key element that
has facilitated fast progress of research on avatar-related challenges
is the availability of parametric body models [Anguelov et al. 2005;
Loper et al. 2015], accounting for both pose and shape variation
in a compact manner, as they simplify the application of research
methods to very large populations of subjects. However, to date,
parametric body models do not include a similarly compact pa-
rameterization of soft-tissue mechanics. As a result, parametric
body models do not exhibit soft �esh deformation induced by body
dynamics, and do not deform under contact.

In parallel, there have been e�orts to characterize soft-�esh prop-
erties of humans and estimate soft-tissue simulation models [Kim
et al. 2017; Pai et al. 2018; Romero et al. 2020]. Unfortunately, due
to the lack of multi-person soft-�esh models, these e�orts must be
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reproduced for each new subject under study. Soft-tissue character-
ization and estimation is a complex and time-consuming process,
not free of ethical challenges either.

In this paper, we present a multi-person soft-tissue avatar model,
built on top of existing parametric body models, and trained from
dynamics data of real subjects. Given a subject’s shape descriptor,
we produce a personalized physics-based model of soft �esh, cover-
ing both skin geometry and mechanical parameters. Notably, the
model is heterogeneous across the body and the tissue parameters
depend on local body shape, not just global shape. Thanks to this lo-
cality, the model can be trained with sparse data, i.e., measurements
from just a few subjects.

In the design of the multi-person soft-�esh model we faced two
important challenges. One is the high potential redundancy of geo-
metric and mechanical parameters, e.g., the e�ective sti�ness of a
nonlinear tissue model can be modulated via both Young’s modulus
and tissue thickness. The other one is the scarcity of training data,
due to the complexity to obtain personalized mechanical response
data of the whole body. Together, these two challenges lead to
strong risk of over�tting and the di�culty to design a parametric
multi-person model.

The key component of our model is a mapping from a shape
descriptor to heterogeneous soft-tissue parameters. In Section 4, we
present a local shape-based regularization of the mapping, which
avoids over�tting and provides robust generalization to unseen
body shapes. Our soft-tissue model is built on top of the SMPL
parametric body model [Loper et al. 2015], as described in Section 3,
making it highly accessible for many applications. Moreover, we
build our model on top of a reduced-order physics simulation ap-
proach [Tapia et al. 2021], to maximize performance. To estimate
our soft-tissue model, we �t dynamic body motion of the DYNA
dataset [Pons-Moll et al. 2015], as discussed in Section 5.

We demonstrate quantitatively and qualitatively the accuracy of
the proposed model. We show that the results are as accurate as per-
subject independent estimation of soft-�esh models. We also show
that the model succeeds to accurately interpolate within the shape
range of the training subjects, thanks to the robust interpretation of
local shape. And �nally, we show that the model generalizes well to
shapes beyond the range of the training subjects, as in Figure 1. An
open-source implementation of our soft-�esh multi-person avatar
model can be found in https://gitlab.com/PabloRamonPrieto/�sh/-
/tree/SIGAsia.

2 RELATED WORK

Our shape-dependent soft avatar model relies on an underlying
parametric body model. SCAPE [Anguelov et al. 2005] set a break-
through in body models, by �nding statistical correlations in both
shape and pose deformations for a large population of subjects.
Later, SMPL [Loper et al. 2015] gained major adoption, due to its
accuracy and amenity to graphics pipelines. Same as SCAPE, it
parameterizes shape and pose separately. Shape is modeled as a
linear deformation of a template mesh plus a correction to joint
locations, and pose is modeled as an additional correction to the
template mesh followed by linear blend skinning. In our work, we
have used SMPL as the reference parametric body model. SMPL-
X [Pavlakos et al. 2019] extends SMPL to include detailed face and

hand models. Deep learning methodologies have enabled a tran-
sition from explicit parametric models to neural models based on
autoencoder architectures with a latent parameterization [Foti et al.
2022]. Alternatively, neural �elds enable the animation of body
dynamics without the need to �t a template to subject data [Bai
et al. 2022]. The very recent work of Zheng et al. [2023] combines
a template parametric model with an overlayed neural �eld for
accurate representation. We build our soft avatar model on top of
an explicit parametric body model, SMPL, but it would be possible
to extend to neural latent models as long as the in�uence on local
shape can be quanti�ed.

In the simulation of body dynamics, the simplest models look
only at the articulated or skeletal body structure. This is a com-
mon representation for character animation and control [Lee et al.
2019]. On top of the basic skeletal structure, multiple authors have
worked on creating anatomically inspired models, including volu-
metric muscles [Fan et al. 2014], or recently even a full spine model
with soft intervertebral disks [Lee et al. 2023]. As an intermediate
approach, Komaritzan et al. [2021] introduced a layered model that
can be personalized.

A di�erent line of work has paid attention to the simulation of
skin deformation and dynamics, by connecting a soft-tissue layer to
skeletal motion [Liu et al. 2013;McAdams et al. 2011]. Unfortunately,
adding detailed soft-�esh deformation increases the simulation cost
by orders of magnitude in contrast to a pure skeletal simulation. As
a middle-ground, to incorporate soft-�esh e�ects while retaining
some of the speed of skeletal motion, the deformation of the soft
�esh can be represented using reduced deformation models [Tapia
et al. 2021; Xu and Barbič 2016]. In our work, we adopt this reduced
simulation approach. A di�erent approach for e�ciency is the use
of fast projective dynamics [Li et al. 2019].

Some works animate soft-tissue dynamics in a data-driven man-
ner [Casas and Otaduy 2018; Pons-Moll et al. 2015; Santesteban
et al. 2020]. The method of Zheng et al. [2021] learns how to gener-
ate secondary motion that is even transferable to other characters.
These methods are very fast and accurate for skeletal dynamics, but
they cannot support general deformation as produced by contact.

We opt for a physics-based simulationmethod that can generalize
to arbitrary interactions. While data-driven methods estimate non-
physical models, physics-based methods require the estimation of
the parameters of a mechanical model.

For the estimation of soft-tissue mechanical parameters, we can
distinguish di�erent approaches. One approach uses dynamic mo-
tion data and maximizes the similarity of oscillatory dynamics [Kim
et al. 2017; Romero et al. 2020]. Another approach uses skin com-
pression pro�les and maximizes the similarity of force-deformation
pro�les [Pai et al. 2018]. Outside computer graphics, the character-
ization of soft-tissue mechanics is of high interest for biomedical
applications [Nava et al. 2008]. In our work, we estimate mechanical
parameters from dynamic motion data, relying on the publically
available DYNA data set [Pons-Moll et al. 2015].

3 BASELINE SOFT AVATAR MODEL

In this section, we describe the high-level design of a soft avatar
model, including a discussion of design choices made in our imple-
mentation. These cover the underlying skeletal parametric avatar

https://gitlab.com/PabloRamonPrieto/flsh/-/tree/SIGAsia
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Figure 2: Some of the design settings of the soft avatar model.

From left to right: (i) template body, showing the part mod-

eled as soft �esh in pink, (ii) handles of the reduced model

in blue, (iii) control points of the shape-based elasticity pa-

rameterization in black.

model, the formulation of continuum elasticity, its coupling with
the skeletal model, the elasticity material model, spatial discretiza-
tion, and reduced-order modeling for e�cient simulation. Readers
interested in our shape-dependent parameterization of elasticity
may hop to Section 4. For a more detailed formulation of the sim-
ulation model, on the other hand, please see the supplementary
document.

Let us consider a template body X̄0 in rest or undeformed con�g-
uration, with surface S̄0 = mX̄0. The template body is transformed
through a sequence of three transformations:

(1) Shape, which modi�es the rest geometry in a personalized
manner. Given a shape descriptor V , the rest geometry be-
comes X̄(X̄0, V).

(2) Elasticity, which applies a deformation due to mechanical
e�ects such as contact or inertia. As a result of elastic defor-
mation, a rest point Ḡ ∈ X̄ transforms into a deformed point
G (Ḡ) ∈ X, with X the deformed body.

(3) Pose, which accounts for the skeletal transformation, typi-
cally implemented through skinning. As several other works
[Tapia et al. 2021; Xu and Barbič 2016], in our model we
apply the elastic deformation �rst, and then we pose this
deformation through skinning. Given a pose descriptor \ ,
the posed body becomes X\ (X, \ ).

We use SMPL [Loper et al. 2015] as baseline parametric body
model. In SMPL, the shape transformation is de�ned through PCA
of a large set of body scans, and the shape descriptor V ∈ IR10

corresponds to the weights of the principal components. The pose
transformation is de�ned by joint angles and linear blend skinning,
together with pose-based corrections added to the unposed geom-
etry. Default SMPL is only de�ned on the body’s surface, but it
can be extended to the body’s volume using a smooth correspon-
dence mapping from the surface of the template avatar S̄0 to the
skeleton [Romero et al. 2020].

We model a soft-tissue layer on the torso, the upper arms and the
thighs, as shown in Figure 2. We formalize the soft-tissue model us-
ing continuummechanics and a general hyperelasticity formulation.
Given a deformation gradient � (Ḡ) and heterogeneous (i.e., spatially
varying) mechanical parameters ^ (Ḡ), we can generally de�ne a
strain energy density function Ψ(� (Ḡ), ^ (Ḡ)). This energy density
is integrated on the whole body (using FEM on a tetrahedral mesh)
to obtain the total elastic energy � =

∫

X̄ Ψ(Ḡ) 3Ḡ . In our implemen-

tation, we compute the deformation gradient as � =
mG
mḠ , without

Figure 3: Dynamics of (a) the baseline soft avatarmodel vs. (b)

the ground-truth DYNA data [Pons-Moll et al. 2015], and (c)

the di�erence. The colormap shows the standard deviation

of per-vertex amplitudes of deformations over all train sub-

jects and train motions. The deformations are in the shape’s

neutral pose, before skinning, i.e., world-space deformations

are pulled back with inverse skinning to the neutral pose.

the transformation introduced by pose. As shown by Romero et
al. [2020], in this way the soft avatar model reproduces exactly the
static poses of the SMPL data-driven model, yet elasticity captures
deformations due to contact and dynamics. Moreover, we pick as
constitutive model Ψ an orthotropic Saint Venant-Kirchho� model
with Fung-type saturation, which captures important anisotropy
and nonlinearity aspects of skin [Romero et al. 2020]. We de�ne
three heterogeneous and personalized parameters in the model:
skin thickness ℎ (de�ned as a fraction of the maximum possible
thickness between surface and skeleton), tangential Young modulus
.C , and normal Young modulus .= . Conversely, we use uniform val-
ues for Poisson’s ratio (= 0.2) and Fung saturation (= 4). It would be
possible to use other material models and parameterizations, such
as the one by Pai et al. [2018]. Our model also includes inertia, mea-
sured using velocities of the posed bodyX\ . In our experiments, we
execute dynamic simulations following an incremental-potential
formulation of backward Euler integration [Kane et al. 2000].

In our implementation, we use a reduced-order approximation of
full-space elasticity. In particular, we follow a handle-based model
[Tapia et al. 2021; Wang et al. 2015], which uses as handles 24 skele-
tal bones together with 86 point handles distributed throughout
the body, as shown in Figure 2.

This reduced model provides a seamless and e�cient enhance-
ment over the “rigid” SMPL model, yet at a fraction of the cost of
a full-space simulation. In practice, the deformation G is encoded
by a set of reduced degrees of freedom (DoFs) @, and elastic forces
on these DoFs can be computed as 5 = − m�

m@ = −
∫

X̄
mΨ
m�

m�
m@ 3Ḡ . We

approximate the integral with a data-oblivious cubature approach
as proposed by Tapia et al. [2021].

We use a common discretization (of the volumetric tetrahedral
mesh, the handles of the reduced model, and cubature points) for all
bodies, computed on the undeformed template body X̄0, at average
skin thickness. To transform the discretization for an arbitrary skin
thickness ℎ and body shape V , we compute the displacements of
the outer and inner surfaces, and apply Laplacian interpolation in
between.

We also discretize the spatially-varying elasticity parameter-
ization (skin thickness and Young moduli) on the surface of the
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Table 1: Top row: The bodies of the DYNA dataset [Pons-Moll et al. 2015], used for training. Bottom row: New bodies used for

testing. For each body, we show the 10 values of the V shape descriptor, ordered according to their importance in the SMPL

model.

DYNA 1
-0.38 -2.28
-0.92 -0.05
2.74 -0.27
-1.12 2.28
0.39 1.85

DYNA 2
-1.66 0.38
0.12 -0.65
-0.27 -0.01
0.51 0.02
-1.62 -0.56

DYNA 3
-0.76 1.04
1.45 -1.42
-0.26 1.73
1.21 1.06
1.42 -1.79

DYNA 4
0.59 -0.73
-0.12 -0.85
-1.50 -0.05
-0.96 1.42
2.07 0.75

DYNA 5
0.17 0.34
-0.83 -0.65
-0.81 1.71
1.95 1.05
0.86 -0.49

TEST 1
-0.71 -0.31
-2.11 -0.93
0.19 -0.32
0.80 -0.90
-0.70 -0.39

TEST 2
-1.20 1.22
2.41 2.05
-3.03 2.26
-2.12 0.34
-0.81 0.23

TEST 3
0.01 -2.32
-0.91 -2.45
2.92 2.01
2.93 2.90
0.06 3.41

TEST 4
0.91 2.23
0.50 -0.92
0.70 -0.64
2.44 -1.11
1.32 -0.45

TEST 5
0.58 -0.60
-0.64 0.20
0.10 -0.86
0.23 0.63
-0.32 -0.13

template avatar, i.e., ^ (B̄), B̄ ∈ S̄0. In our �nal models, we use # = 84

control points {B̄8 , ^8 } (shown in Figure 2), but we start the opti-
mization process with a single point (i.e., homogeneous parameters)
and progressively introduce more points (Please see the details
in Section 5). We design biharmonic basis functions {q8 (B̄)} on
S̄0 [Jacobson et al. 2011], and the elasticity parameter �eld becomes
^ (B̄) = ∑

8 q8 (B̄) ^8 . Skin thickness is naturally de�ned on the sur-
face only, and tangential and normal Young moduli are transformed
to the actual body shape using the Laplacian interpolation discussed
earlier, yielding ^ (Ḡ).

As a baseline for our shape-dependent soft �esh model, we have
optimized the model described so far, independently per subject, on
a set of training subjects. Figure 3 depicts the dynamics recovered
by the independently optimized soft avatar models, compared to the
ground-truth data (and not captured by SMPL alone). In this �gure
and others in the paper, we measure spatially varying dynamics
over the body as the standard deviation of per-vertex deformation
amplitudes in the shape’s neutral pose, i.e., before skinning.

The improvement of the optimized models over SMPL is large,
but not perfect, as the limited expressiveness of the reduced model
cannot represent all the dynamics in the ground-truth data. In
particular, note how the reduced model reproduces dynamics more
accurately on the torso (which has a higher density of handles) than
on the thighs (which are sampled with fewer handles). We have
con�rmed that the major source of error between these baseline
optimized models and the ground-truth dynamics is the use of a
reduced model. We have optimized the elasticity parameters (skin
thickness and sti�ness) for one of the training subjects (DYNA4,
shown in Table 1) using a full-space simulation model, and we have
recovered 94% of the dynamics, while our reduced model recovers
only 51%. Despite this di�erence, we opt for the reduced model
because of its performance vs. accuracy trade-o�.

The independently optimized results set optimal targets for our
shape-dependent model, and we use them for comparisons through-
out the rest of the paper. In Section 6 we provide more details about
the ground-truth data and train and test subjects.

4 SHAPE-DEPENDENT ELASTICITY

Taking as starting point the soft avatar model described in the
previous section, we extend it to allow a shape-dependent multi-
person elasticity parameterization. In this section, we formulate
the function of shape-dependent spatially-varying elasticity param-
eters ^ (B̄, V), and we introduce a local shape-based regularization.
For the formulation of the optimization, we consider the elasticity
parameters ^ (skin thickness and Young moduli) normalized by
their maximum values.

To formulate the shape dependency in ^ (B̄, V) we opt for the
simplest choice, linear regression:

^ (B̄, V) = �(B̄)) V + 1 (B̄) . (1)

The shape domain V is considerably high-dimensional, i.e., IR10 in
our case, and sparsely sampled with subject data. Then, correctly
identifying possible nonlinearities appears hopeless, and higher-
order regression is more prone to over�tting and oscillation. At
�rst, we tried radial basis functions (RBFs), as a general scattered
data interpolation method, but this did not work. We did not try
neural networks, but one could expect the same over�tting issues
as with RBFs. Our choice of linear regression is also supported by
the results attained, as discussed in Section 6.

To further increase the robustness to over�tting, we regularize
the regression coe�cients �(B̄). We do this by de�ning a Tikhonov
regularization loss Lreg [Pighin and Lewis 2007], which is added in
the optimization process detailed later in Section 5. However, simple
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Table 2: Standard deviation (in mm.) of per-vertex dynamics for all train and test subjects, on train and test motions, for all

the comparisons carried out in the paper. Ground-truth data DYNA data [Pons-Moll et al. 2015], independent optimizations

(Section 3), leave-one-out cross-validations (Section 6.2), full optimizations (Section 6.3), and generalization to test subjects

(Section 6.4).

Train motions Test motions

DYNA 1 DYNA 2 DYNA 3 DYNA 4 DYNA 5 Avg DYNA 1 DYNA 2 DYNA 3 DYNA 4 DYNA 5 Avg

Ground truth 4.51 2.92 4.16 3.85 3.19 3.72 4.13 2.38 2.93 3.65 3.21 3.26
Independent 2.61 1.27 1.85 1.96 1.64 1.86 2.09 1.07 1.04 1.41 1.08 1.34
Cross-val. !2 1.95 2.17 1.33 2.03 2.23 1.94 1.63 1.85 0.74 1.49 1.49 1.44
Cross-val. ours 1.85 1.48 1.40 2.13 2.05 1.78 1.57 1.30 0.77 1.52 1.38 1.30
Full opt. !2 2.47 1.26 1.66 2.22 1.92 1.90 2.05 1.09 0.94 1.56 1.29 1.38
Full opt. ours 2.17 1.32 1.55 2.06 1.85 1.79 1.81 1.13 0.87 1.45 1.23 1.29

TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 Avg TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 Avg

Generaliz. !2 1.53 1.37 1.88 1.17 1.61 1.51 1.24 1.01 1.56 0.86 1.26 1.18
Generaliz. ours 2.37 1.51 2.43 1.01 1.73 1.81 1.99 1.17 2.07 0.75 1.36 1.47

!2 regularization Lreg =

∫

S̄0
tr
(

�(B̄)) �(B̄)
)

3B̄ is not satisfactory.

It overdamps inter-subject variability, as we show in our results.
Instead, we propose a regularization approach that looks at the

local importance of the shape coe�cients. With our choice of SMPL
parametric avatar model, the template body surface is personalized
using shape blend-shapes as B̄ + �(B̄) V . We observe that shape
coe�cients in V are locally more important when their blend-shape
coe�cients �(B̄) have larger local variance. Then, as we want to
penalize shape coe�cients with low importance, we can use as
regularizer the inverse of their variance. Even better, we use the
inverse of the covariance, which �nds directions of high and low
importance in parameter space that are not exactly aligned with
the shape coe�cients.

Formally, we implement this importance-based regularization
using a generalized Tikhonov regularization of the form:

Lreg =

∫

S̄0

tr
(

�(B̄)) & (B̄)�(B̄)
)

3B̄ . (2)

And based on the motivation above, we de�ne the regularization
metric & (B̄) as the inverse covariance of shape blend-shapes on a
local patch:

& (B̄) =
(∫

S̄0

F (∥C̄ − B̄ ∥) �(C̄)) �(C̄) 3C̄
)−1

, (3)

withF (∥C̄ − B̄ ∥) a smoothly decaying weight function.
With our choice of regularization metric, directions of shape

coe�cients V with large local in�uence are weakly penalized in the
regularization loss (2). Conversely, directions with little in�uence
are strongly penalized, thus maximizing the robustness of linear
regression. For comparison, !2 regularization would amount to
using an identity metric & (B̄) = � instead of the inverse covariance.

We discretize the regularization loss (2) as:

Lreg ≈ 1

#

#
∑

8=1

tr
(

�)8 &8 �8

)

. (4)

We normalize this discrete approximation by the number of elas-
ticity control points # , to ensure consistency of the loss as we
progressively add control points in the optimization process.

Note that, for the discrete regularization (4), the metric is only
computed at the control points. Therefore, we use as smoothly
decaying weight functionF (∥C̄ − B̄8 ∥) = q8 (C̄), i.e., the biharmonic
basis functions of the control points.

5 PARAMETER OPTIMIZATION

In this section, we describe the estimation of the shape-dependent
elasticity model as a numerical optimization, and we discuss our
solution strategy.

To estimate the shape-dependent elasticity parameters, we mini-
mize the di�erence in estimated dynamic motion for a set of train
subjects with respect to ground-truth motion sequences. We denote
the aggregated �tting loss as L�t. Following previous works [Kim
et al. 2017; Romero et al. 2020], we measure the di�erence in dy-
namic motion based on the amplitude of oscillations of surface
points with respect to the SMPL baseline surface. In particular, we
use separate normal and tangential motion variance as proposed
by Romero et al. We discuss the speci�c motion sequences and
train subjects in Section 6. An alternative to �tting the amplitude
of dynamics is to minimize per-vertex error. However, in our ex-
perience this is such a hard problem that the optimization �nds
a compromise by making skin too sti� and largely clamping its
dynamics.

We gather the parameters of the linear regression (1) for all
control points, which we denote as ? = {�8 , 18 }. With 10 shape co-
e�cients, 3 elasticity parameters, and # control points, the number
of parameters to optimize is 33 × # . Then, putting together the
�tting loss and the regularization loss (4), the parameter estimation
problem is formally de�ned as:

? = argminL, withL = L�t + _Lreg . (5)

The hyper-parameter _ balances �tting and regularization error. As
discussed later in Section 6.2, we empirically optimize this hyper-
parameter.
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Figure 4: Body dynamics of the DYNA train subjects: (a) opti-

mized independently, cross-validation (b) with !2 regulariza-

tion and (c) with our method.

We solve the optimization (5) using Scipy’s trust-region solver for
nonlinear least squares [Branch et al. 1999]. This requires expressing
the loss terms as squared residuals:

L�t = A)�t A�t with A�t = f (?) − f∗, (6)

_Lreg = A)reg Areg with Areg =

√
_ ! ?, (7)

where f (?) and f∗ are, respectively, estimated and target motion
variance vectors, and ! is assembled from the Cholesky factoriza-
tions of the regularization metrics in (4) (scaled by 1/√# and with
0s for the {18 } terms in ?).

For the e�cient computation of residual gradients, it is also
convenient to gather the elasticity parameters for all train subjects
and their control points, which we denote as @ = {^8, 9 = �)8 V 9 +
18 }, with {V 9 } the shape descriptors of the subjects. With" train
subjects, the number of elasticity parameters for all subjects is
3 × # ×" . Then, the residual gradients can be expressed as:

3A�t
3?

=

3f

3@

3@

3?
,

3Areg

3?
=

√
_ !. (8)

3@/3? can be easily obtained analytically from (1). To compute
3f/3@, we have used a �nite-di�erence approximation, which amounts
to simulating the train motion sequences for (1 + 3 × # ) ×" soft

Figure 5: Cross-validation error as a function of the hyper-

parameter _ in (5).

avatars (with one-sided �nite di�erences). This is one order of mag-
nitude more e�cient than estimating 3f/3? through �nite di�er-
ences, which would require simulating the train motion sequences
for (1+33×# ) ×" soft avatars. The computation of 3f/3@ could be
accelerated with di�erentiable simulation, but in practice we have
achieved acceptable performance by parallelizing the simulations
for all soft avatars and motion sequences.

To further speed up the optimization, we have also increased the
number of control points # progressively, with # = {1, 12, 24, 84}.

6 RESULTS

We showmultiple examples where soft �esh is simulated on avatars
of di�erent body shapes. Figure 9 shows contact deformations pro-
duced by interaction with objects, Figure 10 shows skin dynamics
produced by contact between avatars, and Figure 1 shows dynamics
due to body motion. For this last example, we generated 25 random
body shapes. In our implementation, the soft-�esh avatar simula-
tion runs at 30 fps for one body, single-threaded, on a 3.4 GHz Intel
Core i7-4770 CPU with 32GB of memory.

6.1 Subjects and Data

We have used as training data the bodies and animation captures
of the DYNA data set [Pons-Moll et al. 2015]. These consist of
5 bodies, shown in the top row of Table 1. In the table, we also
indicate the V shape coe�cients of the SMPL parametric model
�t to these bodies. We have used 3 motion sequences from the
data set (“one leg jump”, “running on spot”, and “shake hips”) as
training data to optimize elasticity parameters, and 2 other motion
sequence (“jiggle on toes” and “shake shoulders”) as test data. For
the optimization process, we have executed the simulations with
a time step corresponding to 60 fps. We have validated that the
dynamics obtained by the resulting model vary only by 1% with a
time step of 120 fps, therefore the estimation is not signi�cantly
a�ected by numerical damping.

We have generated 5 test subjects (shown in the bottom row
of Table 1) with speci�c body features to test the generalization
capabilities of our method. TEST 1 has an upper body very similar
to DYNA 1 despite the large di�erence in shape coe�cients; TEST
2 has pear-shaped body with wide hips, which no train subject has;
TEST 3 has a bigger chest than any train subject, TEST 4 is skinnier
and taller than the train subjects, and TEST 5 has average shape.

Table 2 summarizes the quantitative analysis discussed in the
following subsections.
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Figure 6: Body dynamics of the DYNA train subjects: (a) opti-

mized independently, (b) with !2 regularization and (c) with

our method.

6.2 Leave-One-Out Cross-Validation

As a quantitative test for our model, we have performed a leave-
one-out cross-validation on the train subjects. Note that this leaves
only 4 subjects as train data each time, and the �fth subject is
often far outside the range of train data. Figure 4 compares the
standard deviation of per-vertex dynamics (a) of optimal targets �t
independently, (b) of the �fth body modeled with !2 regularization,
and (c) of the �fth body modeled with our method. The colormaps
clearly show the bene�ts of our model, as the results are very close
to the optimal targets. With !2 regularization, on the other hand,
thinner subjects appear excessively soft.

We have also used the cross-validation to optimize the hyper-
parameter _ that balances �t vs. regularization in (5). Figure 5 shows
the �t error aggregated on the left-out subjects, while sweeping _.

Figure 7: Norm of covariance of elasticity parameters on

the train subjects: (a) optimized independently, (b) with our

method, (c) with !2 regularization.

Figure 8: Body dynamics of (a) the DYNA train subjects, and

the test subjects in Table 1 (b) with !2 regularization and (c)

with our method.

6.3 Full Optimization

With the model cross-validated and _ optimized, we have trained
the �nal shape-dependent soft-�esh model on the 5 DYNA train
subjects. The results are shown in Figure 6, compared against !2

regularization and independently trained subjects. Figure 7, on
the other hand, compares the covariance of the resulting elasticity
parameters, again with our method, !2 regularization, and indepen-
dently trained subjects. To compute this covariance, we normalize
each parameter within its allowed range in the optimization. The
parameter set for each training subject at each control point rep-
resents a 3D point (skin thickness and two sti�ness values). We
compute the 3D covariance for the parameter sets of the 5 training
subjects at each control point, and we display the Frobenius norm
of this covariance.

The combined analysis of Figure 6 and Figure 7 denotes that our
method achieves very similar dynamics to independently trained
subjects, but with no over�tting, i.e., much lower parameter vari-
ance. The di�erence between our method and !2 regularization is
however small, but this is no surprise, as !2 regularization works
well on the training data. !2 regularization does not su�er from
over�tting either, but it fails to generalize as discussed in Section 6.2
above and in the next section.

6.4 Generalization

As a �nal qualitative test, we have applied our soft-�esh model to
the test subjects in Table 1. Figure 8 compares the dynamics (i.e.,
per-vertex standard deviation of displacements) of our method vs.
!2 regularization. As a reference, we also show the dynamics of the
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Figure 9: Example of object interactionwith the body, produc-

ing contact deformations. Even though our soft-�esh model

is trained from skeletal dynamics, it naturally supports con-

tact deformations at runtime.

train subjects. Our method produces highly plausible results, even
if the test bodies notably extend the range of shape coe�cients.
For instance, subject TEST 3 shows larger dynamics on the chest
than any train subject, and TEST 4 shows less dynamics than any
train subject. Despite their di�erent shape coe�cients, TEST 1 has
an upper body very similar to DYNA 1, and our model succeeds at
capturing local shape similarity and produces similar dynamics on
both. The hips of TEST 2 are an extreme case of local shape not
seen at training. In a nutshell, our method clearly outperforms !2

regularization. With !2 regularization, the dynamics of test subjects
are strongly clamped (Figure 8-b); with our method they are much
more expressive (Figure 8-c), comparable to those of the training
subjects (Figure 8-a).

7 CONCLUSION

In this paper, we have presented the �rst soft-�esh avatar model that
generalizes to bodies of di�erent shape. We achieve this by �tting
a shape-dependent model of elasticity parameters. As we show in
the paper, it is key to design a shape-informed regularization, to
avoid over�tting and to allow for rich generalization even under
extremely sparse training data.

Our method su�ers several limitations, and it also has room for
interesting extensions. Due to the limited amount of data used in
the optimization and tests, the generalization ability of the model
requires further validation. The elasticity parameters are estimated
from skeletal dynamics, and it is unclear if the resulting behavior
is accurate for contact deformations. Ideally, a model should be
estimated combining both sources of data.

As noted when comparing results to the ground-truth data, the
accuracy of the model is largely limited by the expressive ability of
the underlying reduced deformation model. This could be improved
by building a learning-based model for dynamics, but it is important
to retain the interaction capability of the physics-based model.
Finally, given the visual quality achieved recently by NeRF models,
it would be interesting to connect the deformation model to a

Figure 10: Example of dynamics produced by body-body con-

tact. One avatar pushes the other one, and the contact forces

produce both skeletal motion and soft-tissue dynamics (best

seen in the video).

NeRF representation, which might require support for other shape
parameterizations.
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